

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM

COLLEGE OF SCIENCE

Chester F. Carlson Center for Imaging Science

NEW COURSE: COS-IMGS-724 - Introduction to Electron Microscopy

1.0 Course Approvals

200 0 0 0 1 2 p p 2 0 7 0 2 0		
Required course approvals:	Approval request date:	Approval granted date:
Academic Unit Curriculum Committee	9/15/2010	9/25/2011
College Curriculum Committee	9/28/2011	10/11/2011

Optional designations:	Is designation desired?	*Approval request date:	**Approval granted date:
General Education:	No		
Writing Intensive:	No		
Honors	No		

2.0 Course information:

Course title:	Introduction to Electron Microscopy
Credit hours:	3
Prerequisite(s):	Graduate standing in science or engineering or permission
_	of instructor
Co-requisite(s):	None
Course proposed by:	Richard Hailstone
Effective date:	Fall 2013

	Contact hours	Maximum students/section
Classroom	3	30
Lab		
Studio		
Other (specify)		

2.1 Course Conversion Designation (Please check which applies to this course)

Χ	Semester Equivalent (SE) Please indicate which quarter course it is equivalent to:
	1051-724 Introduction to Electron Microscopy
	Semester Replacement (SR) Please indicate the quarter course(s) this course is replacing:
	New

2.2 Semester(s) offered (check)

F 11 37	G .	C	0.1
Fall X	Spring	Summer	Other

All courses must be offered at least once every 2 years. If course will be offered on a biannual basis, please indicate here: **X**

2.3 Student Requirements

Students required to take this course: None
Students who might elect to take the course:
Graduate students in science or engineering.

3.0 Goals of the course (including rationale for the course, when appropriate):

Provide a description of the principles and techniques of imaging systems used in electron microscopy.

4.0 Course description (as it will appear in the RIT Catalog, including pre- and corequisites, and quarters offered). Please use the following format:

IMGS-724

Introduction to Electron Microscopy

The course will introduce the basic concepts and practice of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray microanalysis. During the second half of the course students will do an 8-10 hour hands-on project in SEM or TEM or both, including a project paper and a poster presentation. Laboratory demonstrations will be held in the NanoImaging Lab to reinforce the lecture material. (Graduate student standing in science or engineering, or permission of instructor.) Class 3, Credit 3 (F, alternate years)

5.0 Possible resources (texts, references, computer packages, etc.)

- 5.1 R. F. Egerton, *Physical Principles of Electron Microscopy*, Springer, New York, NY.
- 5.2 Instructor's supplemental course notes.

6.0 Topics (outline):

- 6.1 Optical Microscopy
 - 6.1.1 Optics principles
 - 6.1.2 Light microscopy
- 6.2 Electron Optics
 - 6.2.1 Imaging with electrons
 - 6.2.2 Magnetic lenses and their aberrations
- 6.3 Transmission Electron Microscopy
 - 6.3.1 Electron guns
 - 6.3.2 The illumination system
 - 6.3.3 The imaging system
 - 6.3.4 Electron-specimen interactions
 - 6.3.5 Contrast modes
 - 6.3.6 Electron diffraction
- 6.4 Scanning Electron Microscopy

Operating principles 6.4.1 6.4.2 Imaging modes Electron-specimen interaction 6.4.3 Secondary electron imaging 6.4.4 Backscattered electron imaging 6.4.5 Image formation and quality 6.4.6 6.5 X-ray Microanalysis 6.5.1 Atomic model **Emission process** 6.5.2 Qualitative analysis 6.5.3 EDS system 6.5.4 6.5.5 Quantitative analysis

7.0 Intended course learning outcomes and associated assessment methods of those outcomes

Course Learning Outcome	In-class evaluation	Homework
7.1 Demonstrate the application	X	X
of the optics principles used in		
the light microscope		
7.2 Explain electron beam-	X	X
specimen interactions		
7.3 Identify the major	X	X
components of a transmission		
electron microscope and their		
use in optimizing image		
formation		
7.4 Identify the major	X	X
components of a scanning		
electron microscope and their		
use in optimizing image		
formation		
7.5 Explain the principles of X-	X	X
ray microanalysis and its		
limitations		

8.0 Program outcomes and/or goals supported by this course

Prepares graduate students for research in imaging of nanoscale materials and structures.

9.0

9.0		
	General Education Learning Outcome Supported by the	Assessment Method
<u> </u>	Course	Method
Commun		
	Express themselves effectively in common college-level	
	written forms using standard American English	
	Revise and improve written and visual content	
	Express themselves effectively in presentations, either in	
	spoken standard American English or sign language (American	
	Sign Language or English-based Signing)	
	Comprehend information accessed through reading and	
	discussion	
Intellectu	al Inquiry	
	Review, assess, and draw conclusions about hypotheses and	
	theories	
	Analyze arguments, in relation to their premises, assumptions,	
	contexts, and conclusions	
	Construct logical and reasonable arguments that include	
	anticipation of counterarguments	
	Use relevant evidence gathered through accepted scholarly	
	methods and properly acknowledge sources of information	
Ethical, S	ocial and Global Awareness	
	Analyze similarities and differences in human experiences and	
	consequent perspectives	
	Examine connections among the world's populations	
	Identify contemporary ethical questions and relevant	
	stakeholder positions	
Scientific,	, Mathematical and Technological Literacy	
	Explain basic principles and concepts of one of the natural	
	sciences	
	Apply methods of scientific inquiry and problem solving to	
	contemporary issues	
	Comprehend and evaluate mathematical and statistical	
	information	
	Perform college-level mathematical operations on quantitative	
	data	
	Describe the potential and the limitations of technology	
	Use appropriate technology to achieve desired outcomes	
Creativity	, Innovation and Artistic Literacy	
	Demonstrate creative/innovative approaches to course-based	
	assignments or projects	
	Interpret and evaluate artistic expression considering the	
	cultural context in which it was created	

10.0 Other relevant information (such as special classroom, studio, or lab needs, special scheduling, media requirements, etc.)

10.1 Smart classroom

10.2 Laboratory with facilities for the following demonstrations:

Transmission electron microscope

Scanning electron microscope

X-ray microanalysis