

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM

COLLEGE OF SCIENCE

Chester F. Carlson Center for Imaging Science

NEW COURSE: COS-IMGS-830 – Advanced Topics in Remote Sensing

1.0 Course Approvals

210 C C C C C C C C C C C C C C C C C C C		
Required course approvals:	Approval request date:	Approval granted date:
Academic Unit Curriculum Committee	8/16/10	9/15/10
College Curriculum Committee	9/28/2011	11/1/11

Optional designations:	Is designation desired?		*Approval request date:	**Approval granted date:
General Education:	N	Vo		
Writing Intensive:	N	Ю		
Honors	N	lo		

2.0 Course information:

Course title:	Advanced Topics in Remote Sensing	
Credit hours:	3	
Prerequisite(s):	COS-IMGS-723 or permission of instructor	
Co-requisite(s):	None	
Course proposed by:	Anthony Vodacek	
Effective date:	Fall 2013	

	Contact hours	Maximum students/section
Classroom	3	25
Lab		
Studio		
Other (specify)		

2.1 Course Conversion Designation (Please check which applies to this course)

	Semester Equivalent (SE) Please indicate which quarter course it is equivalent to:
	Semester Replacement (SR) Please indicate the quarter course(s) this course is replacing:
Х	New

2.2 Semester(s) offered (check)

Eo11	Caring V	Cummor	Other
Fall	Spring X	Summer	Other

All courses must be offered at least once every 2 years. If course will be offered on a biannual basis, please indicate here:

2.3 Student Requirements

Students required to take this course: None

Students who might elect to take the course:

Graduate students in Imaging Science Remote Sensing track. Graduate students in the College of Science or College of Engineering.

3.0 Goals of the course (including rationale for the course, when appropriate):

- 3.1 Provide advanced knowledge in a variety of remote sensing modalities, and radiometric and multispectral analysis of remotely sensed images and quantitative sensing systems
- 3.2 Provide capability for conducting quantitative analysis of remotely sensed images

4.0 Course description

IMGS-830

Advanced Topics in Remote Sensing

This course is an in-depth examination of emerging techniques and technologies in the field of remote sensing at an advanced level. Examples of topics, which will differ each semester, are typically formed around a specific remote sensing modality such as lidar, polarimetry, radar, and hyperspectral remote sensing. (COS-IMGS-723 or permission of instructor) Class 3, Credit 3 (S)

5.0 Possible resources (texts, references, computer packages, etc.)

Varies by topic.

6.0 Topics (outline):

The specific imaging modality varies, e.g., light detection and ranging (lidar), polarimetry, radar, and hyperspectral remote sensing. Components common to all modalities are:

- 6.1 A description of object and radiation interactions
- 6.2 Sensor hardware and image and data collection techniques
- 6.3 Appropriate detectors, and sampling and quantization
- 6.4 Data reduction and processing
- 6.5 Visualization, analysis, and information extraction

7.0 Intended course learning outcomes and associated assessment methods of those outcomes

Course Learning Outcome	Homework assignments	Exams
Describe and formulate equations of radiative transfer	X	X
Apply appropriate algorithms for information extraction	X	X

8.0 Program outcomes and/or goals supported by this course

- 8.1 Demonstrate capabilities of a variety of advanced remote sensing techniques.
- 8.2 Assess and apply techniques and algorithms to data from advanced remote sensing modalities.

9.0 N/A

10.0 Other relevant information (such as special classroom, studio, or lab needs, special scheduling, media requirements, etc.)

Smart classroom